SYNNCHRONICITY

GA no: 732240
Action full title: SynchroniCity: Delivering an IoT enabled Digital Single Market for Europe and Beyond
Call/Topic: Large Scale Pilots
Type of action: Innovation Action (IA)
Starting date of action: 01.01.2017
Project duration: 36 months
Project end date: 31.12.2019
Deliverable number: D2.6
Deliverable title: Guidelines for the integration of IoT devices in OASC compliant platforms
Document version: 1.0
WP number: WP2
Lead beneficiary: 28-UDG
Main author(s): Eunah Kim (UDG), Arturo Medela (TST), Bart Braem (IMEC), Rubén Molina Moreno (HOPU), Salud Ruiz Fernández (HOPU), Cédric Crettez (MI), Francesco Arigliano (ENG), Martino Maggio (ENG), Paolo Fosci (MIL), Kaisa Silelius (FVH), Koen Cornelissen (Antwerpen), Omer Faruk Ozdemir (ATOS)
Internal reviewers: Filipe Aranda de Sá (POR), Andrea Gaglione (DigiCat), SeungMyeong Jeong (KETI), Jaime Ventura (POR), Martin Brynskov (AU)
Type of deliverable: Report
Dissemination level: PU
Delivery date from Annex 1: M14
Actual delivery date: M20 (30.08.2018)

This deliverable is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no 732240.
Executive Summary

IoT technologies are being developed and deployed in diverse industry domains and naturally they embrace heterogeneity on devices, data characters, data communication technologies, data models, platforms, etc. As more services are converged and break out the barriers of the industry border, technical challenges on providing interoperable solutions are growing. However, the development of a new standard protocol to fit the needs takes pretty long effort and procedure reinventing and anyway it will be hard to find new homogeneous technologies that fit for all. Rather, the studies are performing to provide context integration minimizing the complexity from the reinvention of the existing work.

SynchroniCity aims to establish the technical foundations of a digital single market for IoT-enabled smart cities in Europe and beyond, where IoT device manufacturers, system integrators and solution providers can innovate and compete in an open environment. In order to realize the objectives, it is important to design minimal interoperability points in the smart city platforms. Each city should be allowed to use its own smart city platforms and chosen technologies on its smart city service development. In order to build a synchronized framework, a minimal set of APIs for open data gathering and sharing should be agreed and implemented.

With this principle, SynchroniCity has defined a minimal set of interoperability points in the southbound and northbound of the platform. This deliverable shows the collected data of the current southbound information from the 8 cities called Reference Zones (RZs) that participate in the SynchroniCity project. For the platform integration model, the data from Seongnam Korea has been also collected in order to include a city using the oneM2M platform. The collected data has been depicted in a table for each city. In order to see commonality and differences, the collected data has been categorized per application and showed used systems, networking (link) technologies and data/messaging protocols. After the analysis, integration models have been discussed with the focus on context data sharing. Diverse smart city platforms are used in SynchroniCity’s RZs and the integration model has been discussed. Examples on how to build an NGSI adapter for communicating with context data management module have been included for guiding cities that need to build one.

We expect that the analysed statistical data from the SynchroniCity’s RZs will be useful for other cities that search for a solution in the same application domain, and the integration models and guidelines will help to measure the required effort in the integration with the SynchroniCity framework, participating the foundation building of the Digital Single Market (DSM).
Abbreviations

AE Application Entity
API Application Programming Interface
BLE Bluetooth® Low Energy (BLE)
CoAP Constrained Application Protocol
CKAN Comprehensive Knowledge Archive Network
CSE Common Services Entity
D Deliverable
DALI Digital Addressable Lighting Interface
DASH7 Developers' Alliance for Standards Harmonization of ISO 18000-7
DSM Digital Single Market
DTLS Datagram Transport Layer Security
EC European Commission
GPS Global Positioning System
GPRS General Packet Radio Service
HTTP Hypertext Transfer Protocol
ICT Information and Communication Technologies
IoT Internet of Things
ITS Intelligent Transportation Systems
JSON JavaScript Object Notation
LEZ Low Emission Zone
LoRaWAN Long Range Wide-Area Network
LTE Long Term Evolution
M2M Machine to Machine
Mca A reference point for M2M communication between CSE and AE
Mcc A reference point for M2M communication between CSE and CSE
Mcn A reference point for M2M communication between CSE and NSE
MQTT Message Queue Telemetry Transport
NFC Near-field communication
NGSI Next Generation Service Interfaces
NSE Network Service Entity
OASC Open & Agile Smart Cities
REST Representational state transfer
RFID Radio Frequency Identification
RZ Reference Zone
SDH Synchronous Digital Hierarchy
SSL Secure Sockets Layer
TETRA Terrestrial Trunked Radio
TLS Transport Layer Security
UDG Universal Device Gateway
UL2.0 FIWARE UltraLight 2.0
WP Work Package
WS Web Socket
WT Work Task
Contents

1 Introduction .. 8
 1.1 WP & Task objectives.. 8
 1.2 Deliverable objectives and methodology.. 8

2 Overview of IoT solutions deployed.. 12
 2.1 ANTWERP .. 12
 2.2 CAROUGE .. 13
 2.3 EINDHOVEN .. 14
 2.4 HELSINKI .. 14
 2.5 MANCHESTER .. 15
 2.6 MILAN ... 15
 2.7 PORTO .. 17
 2.8 SANTANDER ... 18

3 Comparative analysis of IoT integration models ... 20
 3.1 Smart Parking .. 20
 3.2 Smart Noise control .. 22
 3.3 Smart Street Light .. 24
 3.4 Smart Mobility and Traffic .. 26
 3.5 Culture ... 28
 3.6 Citizen information ... 29
 3.7 Environment data ... 30
 3.8 Energy management .. 31
 3.9 Safety Alarms ... 31
 3.10 Security .. 31
 3.11 Observation ... 32

4 Generic integration models and Guidelines .. 33
 4.1 Integration models ... 33
 4.2 Integration guidelines... 41
 4.2.1 Generic description of an Ad-hoc NGSI Adapter ... 41
 4.2.2 NGSI Adapter Example 1: FIWARE IDAS Agent ... 43
 4.2.3 NGSI Adapter Example 2: UDG NSGI Adapter ... 47

5 Conclusion ... 50

References .. 51

Annex .. 53
List of Figures
Figure 1. T2.4 work methodology.. 9
Figure 2. SynchroniCity Reference Architecture and its key interoperability points (red arrows).... 10
Figure 3. Simplified view of the Southbound and Northbound interfaces................................. 11
Figure 4. Parking - Connection Info.. 20
Figure 5. Parking - Data Communication Protocols .. 21
Figure 6. Parking - Data Format .. 21
Figure 7. Parking - IoT Device Management .. 21
Figure 8. Parking - Context Data Management ... 22
Figure 9. Noise – Connection Info .. 22
Figure 10. Noise – Data Format .. 22
Figure 11. Noise – Data Communication Protocol ... 23
Figure 12. Noise – IoT Device Management .. 23
Figure 13. Noise – Southbound Context Data Management .. 23
Figure 14. Street Light – Connection Info .. 24
Figure 15. Street Light – Data Format ... 24
Figure 16. Street Light – Data Communication Protocol .. 25
Figure 17. Street Light – IoT Device Management ... 25
Figure 18. Street Light – Context Data Management ... 25
Figure 19. Mobility – Connection Info .. 26
Figure 20. Mobility – Data Format .. 26
Figure 21. Mobility – Data Communication Protocol ... 27
Figure 22. Mobility – IoT Device Management ... 27
Figure 23. Mobility – Context Data Management ... 27
Figure 24. Culture – Data Communication Protocol ... 28
Figure 25. Culture – Data Format .. 28
Figure 26. Culture – IoT Device Management ... 28
Figure 27. Culture – Context Data Management .. 29
Figure 28. Citizen – IoT Device Version .. 29
Figure 29. Citizen – Connection Info .. 29
Figure 30. Environment – Data Communication Protocol .. 30
Figure 31. Environment – Data Format .. 30
Figure 32. Environment – IoT device management ... 31
Figure 33. Environment – Context Data Management ... 31
Figure 34. Southbound interoperability requirements ... 33
Figure 35. Support of diverse IoT protocols ... 34
Figure 36. DYAMAND - IoT Gateway integration model in Antwerp ... 37
Figure 37. UDG integration model in Carouge ... 38
Figure 38. Helsinki Urban Platform integration model ... 38
Figure 39. WSO2 Integration model in Milan ... 39
Figure 40. FIWARE Integration model .. 40
Figure 41. oneM2M Integration model .. 41
Figure 42. Ad-hoc NGSI adapter .. 42
Figure 43. Data polling .. 43
Figure 44. Subscription Scenario .. 43
Figure 45. Agent Manager integration .. 44
Figure 46. UDG as Carouge integrator .. 47
Figure 47. Creation of a NGSI v2 entity .. 48
Figure 48. Subscription to a NGSI v2 entity ... 48
Figure 49. Update of a NGSI v2 entity ... 49

List of Tables
Table 1. IoT information of Antwerp Smart City applications ... 13
Table 2. IoT information of Carouge Smart City applications ... 13
Table 3. IoT information of Eindhoven Smart City applications .. 14
Table 4. IoT information of Helsinki Smart City applications ... 14
Table 5. IoT information of Milan Smart City applications .. 16
Table 6. IoT information of Porto Smart City applications ... 17
Table 7. IoT information of Santander Smart City applications .. 19
Table 8. Integration models .. 36
Table A1. Reference Zones Analysis: Parking .. 53
Table A2. Reference Zones Analysis: Noise ... 54
Table A3. Reference Zones Analysis: Street Light ... 55
Table A4. Reference Zones Analysis: Mobility and Traffic .. 55
Table A5. Reference Zones Analysis: Environment ... 58
Table A6. Reference Zones Analysis: Culture .. 60
Table A7. Reference Zones Analysis: Citizen ... 61
Table A8. Reference Zones Analysis: Energy Management ... 62
Table A9. Reference Zones Analysis: Safety Alarms .. 62
Table A10. Reference Zones Analysis: Security ... 63
1 Introduction

SynchroniCity represents the first attempt to establish the technical foundations of a digital single market (DSM) for IoT-enabled smart cities in Europe and beyond, where IoT device manufacturers, system integrators and solution providers can innovate and compete in an open environment. The big challenge is to provide an interoperable vendor ecosystem without vendor lock-in and city lock-in with provision of portability of IoT-enabled city services. In order to realize this vision, it is important to design minimal interoperability points in the city platform, while allowing individual choices on technology selection from the cities and avoiding reinvention of the wheel or addition of complexity on the existing platform.

In the architecture decision, a minimal set of interoperability points has been defined at the project consortium meeting based on the SynchroniCity architecture defined in D2.1 [1]. This deliverable D2.6 handles the southbound integration where heterogeneous IoT devices and systems are connected to and communicate with the platforms.

1.1 WP & Task objectives

The main WP2 (IoT-Enabled Framework Component Provisioning and Integration) objectives are to set up the roots for a real digital single market for IoT-enabled urban services through building a shared framework which defines the minimum set of APIs, a set of common data models for city domains, an environment for easy integration of IoT devices in a city platform, and a framework for data access management including licensing, privacy and market mechanisms.

Task 2.4 (Enablement of a DSM for IoT devices manufacturing for Smart Cities) is focused on developing a marketplace for IoT products and solutions that are interoperable with the SynchroniCity framework. This task addresses southbound extension of IoT-based smart cities, enabling interested cities to access a list of IoT products and solutions easily deployable and fully interoperable with the SynchroniCity architecture and deployment. The southbound will be designed to integrate multiple platforms to be used in smart city domains, with respect of OASC [3] compliant platforms, such as FIWARE [4] and oneM2M [5] platforms. The design of interworking will be carried out from protocol level as well as data model level, which make it possible for any data from the platforms to be gathered and shared within the DSM. At the end of this process, a catalogue of devices ready for the integration will be published.

1.2 Deliverable objectives and methodology

The aim of D2.6 (Guidelines for the integration of IoT devices in OASC compliant platforms) is to provide guidelines for southbound integration, so that IoT products and solutions can easily be deployed into the SynchroniCity framework defined in WP2.

It should be noted that the goal of this Deliverable is not to redesign a protocol, API, Agent or platform modules, but to analyse the existing solutions in RZs and to provide guidelines in order to meet the minimum requirements on the integration of the IoT devices in OASC compliant platforms. The integration models are designed as generic as possible in order to include all standard IoT communication protocols used in vertical smart city domains, and to focus on cross-domain interoperability.

Figure 1 illustrates the work methodology that was adopted within the context of T2.4. The information on IoT devices deployed and corresponding IoT protocols in the RZs has been collected and analysed, in order to understand the current situation of each RZ and the future needs from the cities. As different applications may need different requirements on communications and data exchanges with IoT devices, the analysis has been made per application deployed in the RZs. The direction of analysis is to see whether there are common requirements in the choice of IoT protocols
and to provide statistical data on each application built in the RZs, so that other cities may use it as a reference. According to the analysis results, the integration models and guidelines are provided. The integration models are built based on the analysis results to cover the most common protocols and data formats connecting heterogeneous things and to provide easily adaptable steps for diverse situations in the RZs. The following sections describe details of the RZs’ input and corresponding guidelines. The final step in the diagram is not the scope of this Deliverable and will be performed as a next step of this Task (T2.4).

Figure 1. T2.4 work methodology

Figure 2 shows the key interoperability points on the SynchroniCity Reference Architecture (details on the architecture are provided in D2.1 [1]). The red arrows indicate the minimum interoperability points where the integration with physical things, data and services are made. In this architecture, the layer with integration points where physical things are connected is called “southbound”, while the “northbound” refers to the layer with the integration points where processed and stored data are used by smart city services and applications.

The scope of this Deliverable is where the physical things are integrated into the platform highlighted with the blue dotted box in the figure (southbound). As this is the first step to collect data from heterogeneous sources, it is important to support diverse communication protocols to be used in smart city services.
As the focus of this project is not to define a single protocol or set of protocols, but to provide a framework which enables diverse existing solutions to be easily integrated, it is important to find common requirements of the southbound integration.

The simplified view on the interoperability points in the architecture is shown in Figure 3, which illustrates the role of the southbound and northbound interfaces. It must support heterogeneous network connectivity of things and IoT communication protocols used (and to be used) in the RZs, and yet provide seamless interoperability in data sharing. Thus, it is expected no redesign or reimplementation on the currently used technologies in IoT device management and communication protocols, which are selected by the needs of the city services in the RZs.

The focus is on the reusability of the collected data from the data sources of each RZ in order to transform them into new services. The following sections describe the details of the collected data and its analysis results, followed by the integration models and guidelines collected.
Figure 3. Simplified view of the Southbound and Northbound interfaces
2 Overview of IoT solutions deployed

Nowadays, the society develops their activities in a transformation of the context based on the exploitation of the available resources by the use of the Information and Communication Technologies (ICT). According to a publication from Ovance [2], whose study is based on a data collected by HIS Technology (business with presence in more than 31 countries), the number of smart cities will be most likely the quadruple during a period of approximately 12 years from 2013. Also, the majority of the world population is expected to live in urban areas and thus increasing the number of city inhabitants. Thereby, it will be necessary to manage a higher traffic density, different luminosity and connectivity resources, supply of water, gas, electricity and a whole list of public services.

This section intends to report the collection of the southbound information installed and used in the diverse smart city services running in the 8 RZs: Antwerp, Carouge, Eindhoven, Helsinki, Manchester, Milan, Porto and Santander. The collected data on installed sensors and used IoT technologies for their communication and integration in the cities is used to understand the current situation of the RZs and to find out commonalities. The following section describes the data collected, where the cities are listed by alphabetical order.

The collected data is as followings:
- IoT devices (e.g., sensors, back-end devices, etc.) deployed in the RZs for smart city services.
- Networking technologies providing connectivity to the IoT devices
- IoT data communication protocols being used by IoT devices for exchanging signals and messages including sensed data.
- Data format used in the data communication protocols.
- Southbound modules and/or APIs handling device management, context management, communication with its platform, data storage management if applicable.

It is noted that some information is not provided because the cities do not have detailed technical information on the installed system, while the cities receive processed data of the applications from the other organizations.

2.1 ANTWERP

Antwerp is a Flemish city in Belgium, and is the capital of the Antwerp province in the community of Flanders. With a population over 520,000, it is the most populous city proper in Belgium. Its metropolitan area houses around 1.2 million people.

This city implemented four different smart city applications, as shown in Table 1. The parking solution has been implemented with two different IoT devices supported via Sigfox and LoRaWAN communications, which use the REST API with JSON [8] data format.

In the Mobility application, the city cycling service is implemented by comprising with three device types: cycling push sensor, bike sharing stations and camera, relying on LoRaWAN and wired connectivity, respectively. Also, the data format is based on JSON.

As for Environment application, two models are used: fixed/mobile air quality sensors from IMEC [7] and mobile air quality sensor from Gupsy [41]. A Proximus LoRaWAN base station [9] is used for both models as a back-end proxy, providing LoRaWAN connectivity. Overall, LoRaWAN (+Sigfox & DASH7[42]) is used with JSON data format.

The Smart Waste solution accounts with two models: Bigbelly [10] and Enevo [11]. Bigbelly and TWS (Total Waste System) [12] are used as back-end support of IoT devices.
Table 1. IoT information of Antwerp Smart City applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Connectivity</th>
<th>Data comm. protocol</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking</td>
<td>Sigfox</td>
<td>HTTP/REST</td>
<td>JSON</td>
</tr>
<tr>
<td></td>
<td>Sigfox/LoRaWAN</td>
<td>HTTP/REST</td>
<td>JSON</td>
</tr>
<tr>
<td>Mobility</td>
<td>LoRaWAN</td>
<td>HTTP/REST</td>
<td>JSON</td>
</tr>
<tr>
<td></td>
<td>GPS</td>
<td>-</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Ethernet</td>
<td>TCP/IP</td>
<td>n/a</td>
</tr>
<tr>
<td>Environment</td>
<td>LoRaWAN (+Sigfox & DASH7)</td>
<td>-</td>
<td>JSON</td>
</tr>
<tr>
<td></td>
<td>LoRaWAN (+Sigfox & DASH7)</td>
<td>-</td>
<td>JSON</td>
</tr>
<tr>
<td>Smart Waste</td>
<td>GPRS</td>
<td>HTTP/REST</td>
<td>JSON</td>
</tr>
</tbody>
</table>

2.2 CAROUGE

Carouge is a municipality and a city in Switzerland. The city has a population around 22,000 in an area of 2.7 km². Currently, there are two different smart city applications deployed in the city.

On the one hand, there is a smart parking solution implemented in different parts of the city based on a device IEM Pres. The information collected from the devices is transferred to the platform through a LoRaWAN connection, where HTTPS is used as a data communication protocol and JSON as a data format. The sensing data is collected in a UDG (Universal Device Gateway) server [13], which provides intermediate services for the southbound integration, such as a device management and communication and also the connection to the Orion Context Broker that provides context data management. CKAN [25] and MongoDB [45] have been installed and provide data storage and direct data communication for the open data.

On the other hand, there is a noise monitoring solution in different points of the city with OrbiWise [14] sensors. LoRaWAN provides sensor connectivity and the sensing data collected by different sensors is transferred via HTTPS. UDG is also used in this application for providing interoperability with SynchroniCity platform, providing protocol adapting, device management and context management. Orion Context Broker [24] has been installed and CKAN and MongoDB provide data storage and communication services.

Table 2. IoT information of Carouge Smart City applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Connectivity</th>
<th>Data comm. protocol</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking</td>
<td>LoRaWAN</td>
<td>HTTPS</td>
<td>JSON</td>
</tr>
<tr>
<td>Noise</td>
<td>LoRaWAN</td>
<td>HTTPS</td>
<td>JSON</td>
</tr>
</tbody>
</table>
2.3 EINDHOVEN

Eindhoven is a municipality and a city in the south of the Netherlands. The city’s population reached 223,220 in January 2015.

In the city, there are three smart city solutions: parking, mobility and environment. The details on each service are describing below.

In the parking service, there is a solution supported by a proprietary device produced by Q-Park [43]. In fact, both backend IoT device management and device connectivity are based on Q-Park technologies.

In the mobility service, there are connected smart traffic lights and street lights. For the first one, connectivity is supported by ITS-G5 [15], whereas the second one is supported by 2G connectivity. Regarding the data communication protocols, CoAP, DTLS [47], DALI [48] and 1-10V [49] are used with Philips proprietary relational data models for data representation. The device management is performed through Philips City Touch [16].

Finally, in the environment solution, there is a smart air device (AIREAS [17] Airbox) with two versions: the first one is used for intelligent air quality sensors and the second one is measurement system. The connectivity is provided by GSM technology, and AIREAS API v2 is used as a data communication protocol with JSON data format.

Table 3. IoT information of Eindhoven Smart City applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Connectivity</th>
<th>Data comm. protocol</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking</td>
<td>Proprietary via Q-Park</td>
<td>HTTPS</td>
<td>JSON</td>
</tr>
<tr>
<td>Mobility</td>
<td>ITS-G5</td>
<td>-</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>2G</td>
<td>COAP, DTLS, DALI, 1-10V</td>
<td>Philips CT proprietary relational data models</td>
</tr>
<tr>
<td>Environment</td>
<td>GSM</td>
<td>AIREAS API v2</td>
<td>JSON</td>
</tr>
</tbody>
</table>

2.4 HELSINKI

The city of Helsinki is the capital and the largest city of Finland. Helsinki is the seat of the region of Uusimaa in southern Finland, on the shore of the Gulf of Finland. Helsinki has a population of 616,690 in an area of 184.5 km², making it the most populous city in Finland.

Currently, this city has deployed two IoT solutions for noise and environment monitoring. The noise detection service is based on Cesva TA120 [18], supported by 3G/4G connectivity using AIREAS API [17]. The data is sent in JSON format and the sensor communication is made by sending posts to a customized backend system, where data is transformed and proxied to Orion context broker [24] through NGSI API.

The environment application is based on a Vaisala AQ sensor, AQT420 [20]. It is noted that the Finnish Meteorological Institute manages and collects the sensing data and the city will receive the data through an open API from the Finish Meteorological Institute.

Table 4. IoT information of Helsinki Smart City applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Connectivity</th>
<th>Data comm. protocol</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise</td>
<td>3G / 4G</td>
<td>HTTP</td>
<td>Sentilo [19] JSON</td>
</tr>
<tr>
<td>Environment</td>
<td>Sensor->gateway: serial, gateway->platform: wifi</td>
<td>Modbus (ASCII/CSV)</td>
<td>Proprietary</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>

2.5 MANCHESTER

The smart city solutions deployed in Manchester are Street Light, Transport, Environment, Culture, Health and Social Care. Unlike from the other RZs, Manchester is in a special program in which the city itself does not have any control in the southbound information such as which types of devices are installed with which networking connectivity technologies and which data communication protocols are used in the IoT infrastructure. The city only receives data from different IoT infrastructure owners and provides smart city services with the gathered data.

2.6 MILAN

Milan is the capital of Lombardy and the second most populous city in Italy after Rome, with the city having a population of 1.3 million people while its province-level municipality has a population of 3.2 million. Its continuously built-up urban area has a population estimated to be about 5,270,000 over 1,891 Km².

Milan has a large number of parking applications. Devices were distributed throughout this city, reporting a large number of parameters such as smart parking sensors for disabled drivers, smart parking sensors for electric vehicles and smart parking sensors to monitor no-parking areas. The sensors are connected with LoRaWAN / NB-IoT and the messages are exchanged using MQTT over TLS / SSL and CoAP over TLS / SSL. The data format to this extension is JSON and the communication is achieved through a REST API.

According to the mobility and traffic extension in Milan, there are a large number of solutions around the city. Some of them are metro status, metro station (parking status), Around me (point of interest), BikeMe (bike sharing station-bases service), bus/tram waiting time, local train circulation status, flight time table and parking availability of Linate [21] and Malpensa [22] Airports and, Bergamo airport [23] flights timetables, airport and train network status. The majority of them use SOAP Web services, except Bergamo airport flight time table, Linate and Malpensa airport flights timetable and parking availability, whose communication interface are supported by a REST API.

Regarding the traffic solution, there are four different solutions implemented around the city. One of them is the implementation of loops through cable / GSM / Wi-Fi connection; the second solution is based on the deployment of fixed cameras with SDH [50] / Wi-Fi; the third one is the deployment of mobile cameras around the city transmitting data over 3G / 4G links; the last solution is based on local police agents. Various types of loops exist, to measure traffic flow, speed and car dimensions.

Regarding the environment solution, three different solutions are deployed around the city: one of them is the lamp post weather, another one is the cameras Low Emission Zone (LEZ) with 3G / 4G connection, and the last solution is based on the deployment of devices with capacity to detect the temperature, humidity, pressure, air pollution and UV radiation.

There is an IoT solution for a cultural service that is available in Android and iOS operating system using 3G / 4G networks as well, and in energy management heating system which is made of temperature sensors with GSM / GPRS connectivity.

Milan has a safety alarm system by deploying volumetric sensors, cameras, motion detectors, door alarms, fire detectors and smoke detectors. All of them are using Wi-Fi connectivity and proprietary control units as backend IoT proxies.
Finally, the security solution comprises security cameras, mobile GPS and radio, and vehicles’ GPS and radio. LoRaWAN provides connectivity to the security cameras, while the communication of the stations to stations is supported by wired networks.

Table 5. IoT information of Milan Smart City applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Connectivity</th>
<th>Data comm. protocol</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking</td>
<td>LoRaWAN / NB-IoT</td>
<td>LoRaWAN: MQTT+TLS/SSL NB-IoT: CoAP+TLS/SSL</td>
<td>JSON</td>
</tr>
<tr>
<td></td>
<td>LoRaWAN / NB-IoT</td>
<td>LoRaWAN: MQTT+TLS/SSL NB-IoT: CoAP+TLS/SSL</td>
<td>JSON</td>
</tr>
<tr>
<td></td>
<td>LoRaWAN / NB-IoT</td>
<td>LoRaWAN: MQTT+TLS/SSL NB-IoT: CoAP+TLS/SSL</td>
<td>JSON</td>
</tr>
<tr>
<td>Mobility</td>
<td>-</td>
<td>-</td>
<td>XML</td>
</tr>
<tr>
<td>Traffic</td>
<td>Cable/GSM/SDH</td>
<td>proprietary protocol</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>SDH/Wi-Fi</td>
<td>proprietary protocol</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>3G/4G</td>
<td>proprietary protocol</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>proprietary protocol</td>
<td>Italian standard incidents report protocol</td>
</tr>
<tr>
<td>Environment</td>
<td>-</td>
<td>-</td>
<td>JSON /XML</td>
</tr>
<tr>
<td></td>
<td>3G / 4G</td>
<td>proprietary protocol</td>
<td>n/a</td>
</tr>
<tr>
<td>Energy Management</td>
<td>from control unit to central server: GSM/GPRS</td>
<td>proprietary protocol</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>from control unit to central server: GSM/GPRS</td>
<td>proprietary protocol</td>
<td>n/a</td>
</tr>
<tr>
<td>Safety Alarms</td>
<td>Wi-Fi</td>
<td>proprietary protocol</td>
<td>n/a</td>
</tr>
<tr>
<td>Security</td>
<td>LoRaWAN</td>
<td>proprietary protocol</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>communication station-to-station wired (SDS-SCN); AVL; GRI Protocol</td>
<td>proprietary protocol (Tetra [38]- GRI protocol[37])</td>
<td>proprietary protocol (Tetra - GRI protocol)</td>
</tr>
<tr>
<td></td>
<td>communication station-to-station wired (SDS-SCN); AVL; GRI Protocol</td>
<td>proprietary protocol (Tetra - GRI reporting protocol)</td>
<td>proprietary protocol (Tetra - GRI protocol)</td>
</tr>
<tr>
<td>Culture</td>
<td>3G/4G</td>
<td>-</td>
<td>JSON</td>
</tr>
</tbody>
</table>
2.7 PORTO

The city of Porto is the second largest city in Portugal, and the centre of the economic development of the Northern region of the country. Porto has more than 210,000 inhabitants and it’s the centre of a large metropolitan area with around 1.8 million inhabitants and an area of 2,040 km², which makes it one of the major urban areas in Southern Europe.

Nowadays, the city of Porto has five different smart solutions, in the areas of mobility, environment, tourism and public transportation, traffic and water metering. The details about each solution are described below.

The environmental monitoring sensors are supplied by Citibrain/Monitar, and comprise three different stations: SmartNOISESense (noise), SmartMETEOSense (meteorological parameters) and SmartAIRSense (air pollution). They are prepared to collect information in a data format of JSON about the levels of noise, particles (PM2.5, PM10), gas concentration (Oₓ, NO₂, CO), air (temperature, relative humidity), atmospheric pressure, wind (direction, speed), rainfall, UV and solar radiation. According to connectivity, all of them are integrated via HTTP, CoAP and MQTT.

Regarding the tourism and public transportation solution, the models are Accent Systems iBKS Plus [26] (active) and SMARTRAC BullsEye NFC [27] (passive). These solutions are implemented to provide contextualized information in the areas of public transportation and tourism to inhabitants, visitors and tourists. The communication media are Bluetooth® Low Energy (BLE) for the active beacons and NFC for the passive beacons, which use the iBeacon™ [28] and Eddystone™ [29] protocols (active beacons), and the ISO/IEC14443 [30] type A and NFC Forum type 2 protocols [31] (passive beacons).

The third solution comprises wireless water meters and wireless data concentrators, which are used to measure the amount of water supply consumption at the client’s premises and to aggregate data from several meters, respectively. The models are Sappel (Diehl Metering) IZAR CP R3.5 [32] and Sappel (Diehl Metering) Izar Receiver GPRS/LAN [33].

Another smart solution is related with mobility and traffic. In this case, the solution comprises vehicle counters and video cameras implemented around the city, which collect information in real time about the general traffic status through a TXT data format and video format, respectively. Also, the communication protocols to this mobility solution are proprietary protocols.

<table>
<thead>
<tr>
<th>Application</th>
<th>Connectivity</th>
<th>Data comm. protocol</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobility</td>
<td>Copper wires</td>
<td>-</td>
<td>TXT</td>
</tr>
<tr>
<td></td>
<td>Ethernet</td>
<td>ONVIF [35]</td>
<td>n/a</td>
</tr>
<tr>
<td>Environment</td>
<td>Wi-Fi</td>
<td>HTTP</td>
<td>JSON</td>
</tr>
<tr>
<td></td>
<td>Wi-Fi</td>
<td>CoAP</td>
<td>JSON</td>
</tr>
<tr>
<td></td>
<td>Wi-Fi</td>
<td>MQTT</td>
<td>JSON</td>
</tr>
<tr>
<td>Tourism and transportation</td>
<td>Bluetooth® Low Energy (BLE)</td>
<td>iBeacon™ and Eddystone™</td>
<td>TXT</td>
</tr>
<tr>
<td></td>
<td>NFC</td>
<td>ISO/IEC14443 type A, NFC Forum type 2</td>
<td>TXT</td>
</tr>
</tbody>
</table>

Table 6. IoT information of Porto Smart City applications
2.8 SANTANDER

The city of Santander is the capital of the autonomous community and historical region of Cantabria situated on the north coast of Spain. Located east of Gijon and west of Bilbao, the city has a population about 178,000 (2013) in an area of 35 km².

The city of Santander has seven different applications, and the details about each solution are described below.

The parking extension provides real-time parking information through the sensors deployed around the city. Meshlium (Libelium [34]) using 802.15.4/3g/Wi-Fi/Ethernet is used as backend IoT proxy. REST API, MQTT and WebSocket are used for data communication protocols, which are transmitted in a UL2.0 format.

The noise sensors are responsible for the measurement of noise levels in the city through the implementation of Libelium [34] devices with similar communication protocols of the parking extension.

In the street light application, the models for this application are use the Meshlium (Libelium) presence and luminosity nodes. Meshlium (Libelium) is chosen as a back-end proxy with 802.15.4 / 3G / Wi-Fi / Ethernet connectivity. Sensor data is transmitted through REST API, MQTT and WebSocket, which transmit the data in a UL2.0 format to communicate with context data management module.

For mobility and traffic, Meshlium (Libelium) vehicle counter sensors and Meshlium (Libelium) vehicle speed sensors are deployed. Meshlium (Libelium), whose connectivity is based on 802.15.4 / 3G / Wi-Fi / Ethernet, is used as a backend IoT proxy system. REST API, MQTT and WebSocket are used as data communication protocols, which transmit the data in a UL2.0 format to communicate with context data management module.

In the environment application, there are Meshlium Noise (Libelium) sensors, Meshlium Luminosity (Libelium) sensors, Meshlium Temperature (Libelium) sensors, Smart Spot (environmental devices), GPRS module and MOBILE node. 802.15.4 / 3G / Wi-Fi / Ethernet are providing the connectivity to Libelium devices. For the smart spot air quality service, Wi-Fi and M2M connectivity is provided, and for the mobile nodes, GPRS is used. According to the data communication protocol, all the Libelium devices are supported via REST API, MQTT and WebSocket. The Smart Spot communications are supported by LwM2M via FIWARE and connected to the Orion Context Broker.

Another application in Santander is smart gardens, where Libelium devices (irrigation sensor and agriculture sensor) are deployed, connected via 802.15.4 / 3G / Wi-Fi / Ethernet. REST API, MQTT and WebSocket are used as data communication protocols.

Finally, for a citizen service, the city has a mobile application, with a version for Android and iOS, using the typical available connectivity technologies on these devices (Wi-Fi, 3G, 4G and Bluetooth Low Energy).
In this city, the Libelium (Spanish company) is dominating in the deployment of IoT solutions due to the fact that it participated in the Smart Santander project [46]. Santander is considered as one of the most successful cases in the deployment of IoT smart city solutions. It has implemented different solutions in different contexts.

Table 7. IoT information of Santander Smart City applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Connectivity</th>
<th>Data comm. protocol</th>
<th>Data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking</td>
<td>802.15.4 / 3G / Wi-Fi / Ethernet</td>
<td>REST API, MQTT, WebSocket</td>
<td>UL2.0</td>
</tr>
<tr>
<td>Noise</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Street Light</td>
<td>802.15.4 / 3G / Wi-Fi / Ethernet</td>
<td>REST API, MQTT, WebSocket</td>
<td>UL2.0</td>
</tr>
<tr>
<td>Mobility</td>
<td>802.15.4 / 3G / Wi-Fi / Ethernet</td>
<td>REST API, MQTT, WebSocket</td>
<td>UL2.0</td>
</tr>
<tr>
<td>Environment</td>
<td>Wi-Fi, M2M</td>
<td>LwM2M</td>
<td>JSON, TEXT, TLV, Packet</td>
</tr>
<tr>
<td></td>
<td>802.15.4 / 3G / Wi-Fi / Ethernet</td>
<td>REST API, MQTT, WebSocket</td>
<td>UL2.0</td>
</tr>
<tr>
<td></td>
<td>802.15.4 / 3G / Wi-Fi / Ethernet</td>
<td>REST API, MQTT, WebSocket</td>
<td>UL2.0</td>
</tr>
<tr>
<td></td>
<td>802.15.4 / 3G / Wi-Fi / Ethernet</td>
<td>REST API, MQTT, WebSocket</td>
<td>UL2.0</td>
</tr>
<tr>
<td></td>
<td>802.15.4 / 3G / Wi-Fi / Ethernet</td>
<td>REST API, MQTT, WebSocket</td>
<td>UL2.0</td>
</tr>
<tr>
<td>Smart Gardens</td>
<td>GPRS</td>
<td>REST API, MQTT, WebSocket</td>
<td>UL2.0</td>
</tr>
<tr>
<td></td>
<td>802.15.4 / 3G / Wi-Fi / Ethernet</td>
<td>REST API, MQTT, WebSocket</td>
<td>UL2.0</td>
</tr>
<tr>
<td></td>
<td>802.15.4 / 3G / Wi-Fi / Ethernet</td>
<td>REST API, MQTT, WebSocket</td>
<td>UL2.0</td>
</tr>
<tr>
<td>Citizen</td>
<td>Wi-Fi, 3G, 4G, Bluetooth LE</td>
<td>-</td>
<td>n/a</td>
</tr>
</tbody>
</table>
3 Comparative analysis of IoT integration models

The SynchroniCity project fosters and welcomes diversity among the RZs, not only cultural but also technological, given that for similar problems each one of them could have and apply different solutions. One of the project goals consists in harmonizing these diverse approaches and look for a way to converge.

Having this aim in mind, each RZ performed a thorough exercise to characterize their own IoT infrastructure to better understand which IoT devices are employed in each application. Some points considered as critical were accounted for, and as a result, the collected data is presented in this section.

As a first noticeable factor, it is worth mentioning that up to 13 applications were distinguished with a staggering number of 92 IoT devices, covering their needs. The analysis has been made by digging into the different solutions given in each RZ to each one of those applications, which could be considered as city challenges.

3.1 Smart Parking

One of the most pressing subjects, addressed in up to 6 RZs involved in the project, is the one related to the availability and management of parking spots in their urban environment. So, various parking sensors are being currently employed, with a third part of them employing a proprietary server or gateway for IoT devices. Most of them rely on a LoRa / LoRaWAN connectivity (Figure 4) and a REST or MQTT data communication protocol (Figure 5). It is worth highlighting Milan’s case, where the parking issue receives a particular treatment depending whether the area to control is a restricted-parking place, some electric vehicles parking spots are available or even there is a zone for disabled people to park their cars. As for the data formats employed, the trend implies using JSON as the preferred one, as depicted in Figure 6, and each RZ uses different IoT device management systems shown in Figure 7. However, the majority of context data management solutions in the southbound interface are not clear as for today, although some RZs are already employing Orion Context Broker and REST API (Figure 8).

![Parking Connectivity Info](image.jpg)
Figure 5. Parking – Data Communication Protocols

- REST: 22%
- MQTT: 29%
- COAP: 21%
- HTTPS: 7%
- Websocket: 7%
- N/A: 14%

Figure 6. Parking – Data Format

- JSON: 67%
- XML: 11%
- UL2.0: 11%
- N/A: 11%

Figure 7. Parking – IoT Device Management

- FIWARE IDAS: 25%
- FIWARE IDAS: 25%
- UDG: 25%
- Romcore SmartCities backend: 25%
- ACPaaS IoT Gateway: 25%
3.2 Smart Noise control

Next in line the problem of noise appears, being considered as a hot topic by up to three RZs. These RZs provide different inputs on the networking protocols (Figure 9), while the data communication protocols and formats are similar (Figure 10 and Figure 11), with different security measures applied. One RZ describes its device management system but two don’t (Figure 12). What is somehow achieved is a common context data management, where Orion Context Broker can be employed by the three cases if needed (Figure 13).
Figure 11. Noise – Data Communication Protocol

Figure 12. Noise – IoT Device Management

Figure 13. Noise – Southbound Context Data Management
3.3 Smart Street Light

On the other hand, the situation concerning the street light concept can be found. Not much data is available with regard to this topic, but in any case truth is the actuation when presence is detected and luminosity dimming is getting more and more important in the smart city context.

Three RZs run this application, and there are diverse network connecting technologies used in this application as shown in Figure 14, but not so much information has been collected on the data format as shown in Figure 15.

![Street Light Connectivity Info](image)

Figure 14. Street Light – Connection Info

![Street Light Data Format](image)

Figure 15. Street Light – Data Format

The same situation applies to the case of the data communication protocols (Figure 16), IoT device management (Figure 17) and the context data management, where no clear option is preferred (Figure 18).
Figure 16. Street Light – Data Communication Protocol

Figure 17. Street Light – IoT Device Management

Figure 18. Street Light – Context Data Management
3.4 Smart Mobility and Traffic

Another hot topic is the one related to what has been considered as a mix of mobility and traffic. Almost every RZ involved in the project shows its desire to improve the traffic conditions, especially in their downtowns in order to avoid the trouble derived from congestion and traffic jams. At the current status, six applications are provided across five RZs. The approaches vary from the strict road controls, checking for the number of cars passing by and/or their speeds, to the encouragement to use another means of transportation apart from the car, such as bikes, buses or metro. Regarding this application, it is not easy to find a common ground, since several solutions rely on proprietary solutions that employ different connections and data formats.

The details are shown below in a scope of the connectivity info (Figure 19), the preferred data formats (Figure 20), the data communication protocol (Figure 21), IoT device management (Figure 22) and the context data management (Figure 23).
Figure 21. Mobility – Data Communication Protocol

Figure 22. Mobility – IoT Device Management

Figure 23. Mobility – Context Data Management
3.5 Culture

To assist not only locals but also tourists in getting to know the city, a cultural approach is followed by two RZs, using mainly beacons to that extent, but not enough valid information is available with regard to the data communication protocols among devices (Figure 24), data format (Figure 25), and REST API for the southbound communication are used, allowing for the interaction with a context broker (Figure 27). IoT device management is provided directly from the platform (Figure 28).
3.6 Citizen information

Two different RZs put the focus on their citizens, counting on their own mobile phones to trigger actions through a mobile app available in mainly both Android and iOS, as shown in Figure 28. Connectivity is provided by cellular networks (3G/4G) that typically are available at those devices, as depicted in Figure 29.
3.7 Environment data

Seven RZs collect environment data through their smart city application. For the environment data capturing, as summarized in Figure 30, the data communication protocols vary, with REST / MQTT / Websocket as popular choices but also missing information and proprietary protocols for almost half of the available data. Contrary to the diverse choice of IoT device, the data formats are much more open with JSON and UL 2.0 accounting for almost 70%, as summarized in Figure 31.

RZ’s platforms provide customized IoT device management (Figure 32), and for environment context data management, only one RZ managed the WSO2 context broker (Figure 33), the missing information can be indicated the need for further harmonization within the project.
3.8 Energy management

This application is only implemented in Milan. The energy management situation is being handled through a dedicated Control Units as Backend proxy for the IoT devices, relying on a proprietary data communication protocol and using cellular connections (GSM / GPRS) from their control units to their central servers.

3.9 Safety Alarms

Safety Alarms is also implemented only in Milan managed by local polices. Again the solution is depending on proprietary data communication protocols and Wi-Fi is used for network connectivity. An Italian solution, Axitea [6] is used for IoT device management.

3.10 Security

Milan conducts some activities in the field of security as well. To this end, three different IoT devices are being employed, relying in two kinds of backend proxy for IoT devices to provide network connection between sensors and control units (one with radio communication server, and one with switch). GSM / GPRS are used in network connection and all of them use a proprietary data
communication protocol (Tetra [38] - GRI Protocol [37]) and two of them using Tetra as their data format.

3.11 Observation

Some RZs are in the midst of deploying modern wireless water meters but scarce data is available regarding their particular characteristics. Often only the device model name and a proprietary communication protocol are described (e.g. PRIOS protocol [36]).

Even though the smart waste initiative reaches every major city around the world, only one of the RZs present a solid application, using a GPRS connection and a REST API, as well as a REST API southbound communication and a promise to employ an Orion Context Broker instance as its context data management tool. The same goes for the smart gardens case, where one of the RZs presents interesting initiatives, relying on a 3G / GPRS communication and the chance of employing REST API, MQTT or WebSockets as data communication protocols.

Two different RZs put the focus on their citizens, counting on their own mobile phones to trigger actions through a mobile app available in both Android and iOS operating systems, and employing as connection one of the options typically at hand at those devices (cellular and Wi-Fi communications). The latest stretch of applications relates to initiatives taking place in Milan. First, the energy management situation is being handled through two different models of IoT devices, relying on a proprietary data communication protocol and using cellular connections from their control units to their central servers. The safety alarms solution also depends on proprietary data communication protocols and this time using Wi-Fi as the connection technology. Last, Milan conducts some activity in the field of security. To this end, three different IoT devices are being employed. All of them use a proprietary data communication protocol and at least two of them use Tetra.
4 Generic integration models and Guidelines

As SynchroniCity aims to be platform-agnostic, it is important to make the framework to be open to all platforms that RZs are using. At the same time, it is also important to have common APIs for the integration. Figure 34 illustrates the principle requirements on the southbound interoperability: support of diverse networking connectivity, support of heterogeneous IoT data communication protocols, seamless device management, provision of context management and common data formats to the platform.

Figure 34. Southbound interoperability requirements

As shown in the survey results explained in the Section 2 and 3, RZs use various network connectivity technologies depending on the needs and available device solutions in the markets. Also the choice of data communication protocols is diverse depending on the device and platform choices. These two points are not to be modified in the scope of SynchroniCity, as there should be no limits to the use of the technologies that are deployed and working.

This section describes integration models for each RZ that use different platforms taking into account the current situation described in the Section 2 and 3. It also provides implementation guidelines for the common API to be used to communicate with the Context Data Management Module.

4.1 Integration models

Eventually, SynchroniCity should support the needs of the broader cities than the needs of the current RZs, but as a starting point, the integration models are designed taking into account of the IoT platforms that the RZs are using as following:

- DYAMAND [39] (Antwerp)
- UDG [13] (Carouge)
- Helsinki Urban platform (Helsinki)
- WSO2 [40] (Milan)
- oneM2M [5] (Seongnam)

It is noted that Manchester is not included here as the city does not have any possession and control of IoT devices and corresponding southbound functionalities as it is mentioned in the Section 2. The city only controls data that has been transferred to the city’s platform from the diverse sources deployed in the city via diverse national projects.

As we have seen in the Section 3, there are diverse physical devices installed in RZs using different networking technologies and data communication protocols in different applications. Some includes legacy systems and protocols. Diverse networking (connectivity) technologies among devices are being used (e.g., LoRaWAN, IEEE 802.15.4, 3G, Wi-Fi, etc.) for different applications. The device manufacturer provides proxies to connect sensing devices to the network infrastructure or a separate gateway is used to handle both the network connectivity and data communication. The survey results also show diverse data communication protocols are used such as MQTT, REST API, CoAP, HTTP / HTTPS, and Websocket. The interoperability of the heterogeneous IoT protocols is often solved by intermediate systems such as proxies or gateways. Although the widely used smart city platforms such as FIWARE or oneM2M provide heterogeneous IoT device integration, the set of supporting protocols directly from the platforms are limited and the users should build customized proxies, gateways or adapters for industry specified protocols which are not supported by the platform. In SynchroniCity, most of the RZs built gateways or proxies for IoT integration, and Antwerp uses imec’s DYAMAND and Carouge uses UDG (Universal Device Gateway), which are dedicated for heterogeneous protocol integrations covering multiple application domains with a minimal set of platform services.

Considering the different system configuration in the RZs, the southbound integration model must consider no reinvention and provide the integration models and guidelines to minimize the overhead created by the effort to be compliant with the SynchroniCity framework.

Figure 35. Support of diverse IoT protocols
There is no doubt that it is essential to cover diverse networking technologies for the IoT connectivity and data communication protocols and not to exclude the use of standardized application-specific IoT protocols. In order to accomplish that, it is necessary to introduce protocol adapters that support multiple IoT data communication protocols. Figure 35 illustrates the concept of the support of diverse IoT data communication protocols used in the current RZs and for others to be extended.

Such protocol adapter is a must in smart city solutions, which include multiple application domains which naturally connect heterogeneous IoT protocols. SynchroniCity’s RZs have customized protocol adapters as follow:

- **FIWARE IoT Agent**: used in Santander, Porto, and Eindhoven. It provides Ultralight 2.0 protocol connector as well as connectors for MQTT, HTTP and AMQP, and communicate with Orion Context Broker with NGSI.

- **DYAMAND** (Dynamic, Adaptive Management of Networks and Devices): used in Antwerp to support multiple IoT protocols. It abstracts the peculiarities of devices, on different levels (network, protocols, languages, data formats and control flow). It is able to represent devices, its data and how to interact with the devices in a normalized way.

- **UDG (Universal Device Gateway)**: used in Carouge for integration of different smart city applications. It supports over 50 different IoT connection and communication protocols including international standards and a wide area of industry standards, as well as legacy support. It also supports NGSI to connect to the Orion context broker.

- **Customized Gateway in Helsinki**: developed in Helsinki to provide API conversion from O-Mi, O-DF that are used in Helsinki Urban Platform to NGSI. The high-level building block on this model is in Table 8. Integration models.

- **Customized Proxy in Seongman**: developed in KETI to provide API conversion from oneM2M Mca to NGSI. The high-level building block on this model is in Table 8. Integration models.

It is noted that Milan has a plan to build a customised NGSI adapter to be used for its WSO2 platform to be compliant with SynchroniCity reference architecture.

As it is illustrated in the Figure 35, the minimum requirement to provide integrated framework is to agree on the common data format as well as an API. The survey results show that JSON, XML, UL2.0 and TXT are used in the RZs. Regarding the data format, it follows the decision of the SynchroniCity’s task T2.2 (Enablement of a DSM for IoT enabled Smart City applications), where JSON data format with SynchroniCity’s common data models are defined.

Unlike the heterogeneous protocol support, the API for the context management and its data format is a key to build an interoperable solution and it is necessary to use a common data format between southbound modules and the context data management module. There is a minimal set of requirements for smart city solutions to be compliant with SynchroniCity’s framework as followings:

A. The smart city solutions must be provided with protocol adapters to support the diverse IoT data communication protocols.

B. In order to be compliant with the SynchroniCity’s reference implementation, the smart city solutions must provide NGSI API for communication with the SynchroniCity context data management module.

C. Considering that the current reference data models are based on the JSON data format, it is required to use JSON data format to communicate with SynchroniCity’s reference platform.

Each RZ is in different status regarding the fulfilment of these requirements. The following table explains the required work in the southbound integration in the different platforms used in different
RZs. It describes the binding protocols\(^1\) and supporting protocols\(^2\) in the platform, which can help the choice of the devices when introducing new services and platforms.

Table 8. Integration models

<table>
<thead>
<tr>
<th>DYAMAND in Antwerp</th>
</tr>
</thead>
<tbody>
<tr>
<td>The DYAMAND platform is the IoT middleware layer of the IMEC data platform that is used within the Antwerp Smart City project, City-of-Things. This DYAMAND component is very flexible in terms of supporting novel types of sensors and standards via a plug and play architecture. It also supports actuation, device management as well as monitoring and error reporting. Within the City of Things data stack, DYAMAND sends all data to the Kafka Message Buffer.</td>
</tr>
<tr>
<td>Heterogeneous IoT protocol integration</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Connecting to the Context Data Management</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IoT Gateway in Antwerp</th>
</tr>
</thead>
<tbody>
<tr>
<td>The IoT Gateway is responsible for processing device messages outside the Antwerp Smart City project, City-of-Things. The IoT Gateway manages IoT devices and captures real-time data streams (Southbound IOT devices data ingestion). It transforms the incoming messages to a standardized JSON data model and provides further distribution of these messages through a RESTful pub-sub model.</td>
</tr>
<tr>
<td>Heterogeneous IoT protocol integration</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Connecting to the Context Data Management</td>
</tr>
</tbody>
</table>

\(^1\) Here, it means these protocols are directly supported by the platform with its the intercommunication modules.

\(^2\) Here, it means these protocols are supported by installing extra modules developed by its community.
In Antwerp there are two IoT southbound platforms, DYAMAND and the IoT Gateway. Under the IoT Gateway platform, NiFi instance transforms the messages into NGSI and pushes them to the Orion context broker.

UDG (Universial Device Gateway) in Carouge

UDG supports rich sets of IoT protocols in link connectivity, networking and data communication in diverse application domains (currently over 50 IoT protocols are supported including major standard protocols and protocols used in legacy systems). It is designed to support large-scale IoT services with heterogeneous IoT devices. It also provides its own platform services and the southbound platform modules, which can be separately used as an intermediate solution for supporting seamless interoperability for heterogeneous IoT edge into different IoT platforms in the case of Carouge.

| Heterogeneous IoT protocol integration | Binding protocols: about 50 IoT protocols including HTTP, MQTT, LwM2M, CoAP, 6LoWPAN, 6Tisch, AMQP, etc.
Other protocols used in specific application domains: should build dedicate connectors to support the protocols. |
| Connecting to the Context Data Management | Support NGSI. No extra work needed.
Illustrated in Figure 37. |
In Carouge, at the moment there are not many IoT protocols being used, but the city is extending its services in diverse domains which may require the integration of heterogeneous IoT protocols. The choice of UDG has been made due to its wide range of IoT protocol support and easy integration with IoT platforms.

Figure 37. UDG integration model in Carouge

Helsinki Urban Platform in Helsinki

Helsinki Urban Platform is designed to support a rich set of diverse smart city applications built in Helsinki.

| Heterogeneous IoT protocol integration | Binding protocols: HTTP, Modbus, AIREAS, etc. Other protocols used in specific application domains: should build dedicate connectors to support the protocols. |
| Connecting to the Context Data Management | Need to build a dedicate module or device that support NSGI connecting the Urban Platform to the SynchroniCity context data management module. |

Helsinki uses O-Mi, O-DF APIs in its platform, and Helsinki has developed a customized gateway that supports NGSI for sharing the open data within the SynchroniCity framework.

Figure 38. Helsinki Urban Platform integration model
WSO2 in Milan

WSO2 is a fully open source interoperability platform. WSO2 APIs are released under Apache Software License Version 2.0.

WSO2 is composed by several modules such as API manager, Enterprise Integrator, Identity server and Data Analytics server. WSO2 IoT provides technologies for devices to develop connected products as well as integration and analytics capabilities.

| Heterogeneous IoT protocol integration | Binding protocols: customized for Milan applications such as MQTT + TLS / SSL, CoAP + TLS / SSL. Other protocols used in specific application domains: should build dedicated adapters (or gateways) to support the protocols. |
| Connecting to the Context Data Management | Needs to build a dedicated module or device that support NSGI connecting WSO2 to the Synchronicity context data management module. It may be done within the context of the Open Call. |

As Milan uses WSO2 platform which uses different APIs for service data, it is necessary to build a proxy (or gateway, or extend NGSI adapters) to share the open data for creating new services. Milan plans to build the interconnector through open calls.

FIWARE Platform in Eindhoven, Porto and Santander

FIWARE Platform is widely used in European smart city platforms by providing diverse functionalities in modular approach to build IoT and smart city services.

| Heterogeneous IoT protocol integration | Binding protocols: HTTP, MQTT. Supporting from the local development: OMA LwM2M, CoAP Other protocols including legacy systems: should build dedicated connectors (or gateways) to support the protocols. |
| Connecting to the Context Data Management | With FIWARE connectors: NGSI based. No extra work needed. With customised gateway for non-supporting IoT protocols: the gateway should support NGSI. Illustrated in Figure 40. |
When the device supports UL2.0/HTTP, MQTT, LWM2M/CoAP, it is directly connected to FIWARE IoT Agents (respectively, LWM2M IoT Agent, JSON IoT Agent, Ultralight IoT Agent.)

For other IoT protocols, a dedicated IoT gateway should support the protocols. FIWARE IoT device management support NGSI and communicates with the Orion Context Broker.

oneM2M in Seongnam

oneM2M is a common IoT middleware specification for different domains and supports rich southbound intergration. To provide better migration with existing deployment, especially in smart cities, oneM2M interworking technologies have been specified. (e.g. LwM2M). oneM2M is already deployed in the other metro cities in South Korea, such as Busan and Goyang.

| Heterogeneous IoT protocol integration | Binding protocols: HTTP, CoAP, MQTT, WebSocket. Supporting protocols: BBF TR-069, OMA DM, LwM2M, AllJoyn, OCF, OSGi |
| Connecting to the Context Data Management | Needs to build a dedicate module that supports NSGI connecting the oneM2M to SynchroniCity’s context broker. Leveraging oneM2M semantic capabilities, it can be designed with semantic interworking or non-semantic generic interworking following oneM2M interworking framework specification. |
Seongnam uses oneM2M Mca interface for the southbound interface in oneM2M platform, and it builds interworking proxies as shown in the Figure, in order to support open data sharing based in NGSI interface.

(CSE: Common Services Entity, AE: Application Entity)

Customised platform in other cities

| Heterogeneous IoT protocol integration | Binding protocols: customized sets based on the city demands. Other protocols used in specific application domains: should build dedicate connectors to support the protocols. |
| Connecting to the Context Data Management | Needs to build a dedicate module or device that support NSGI connecting the Urban Platform to the SynchroniCity context data management module. |

4.2 Integration guidelines

In the Section 4.1, the current RZs’ integration models are presented in order to meet the minimal requirement to be integrated into the SynchroniCity’s framework. It explains different approaches to support NSGI in RZs which use different platforms. As the table explains, an NGSI adapter is needed in several cases. Thus, this section explains practical implementation guidelines to support southbound integration with the SynchroniCity’s platform that requires NGSI API for the context data management.

In particular, three reference implementations are described. In order to give a generic view on developing an NGSI adapter, a basic composition of an Ad-hoc NGSI adapter is described with its message sequence diagram. Two examples of the reference implementations are followed: a guideline to build an adapter adopting FIWARE IDAS Agent Manager [44], and the UDG example of a third-party development of the NGSI adapter that was performed in a SynchroniCity RZ.

It is important to emphasise that the following scenarios have to be considered as reference examples, and that they should be customised for the specific IoT infrastructure already deployed in the RZs.

4.2.1 Generic description of an Ad-hoc NGSI Adapter

As it is explained in the Section 4.1, when the legacy platform does not support NSGI, an ad-hoc NGSI adapter must be developed to integrate with the SynchroniCity’s platform. The ad-hoc adapter is composed by two main components as shown in Figure 42:
A Legacy Client

A Model Adapter

The Legacy Client will be responsible for accessing the Legacy Platform, moving the data accordingly to the legacy interfaces. Such component has to embed the logic to access the data from the Legacy Platform. For example, polling or subscribing if this functionality is provided by the legacy interface. Some improvements could be performed in this data phase: for instance filtering out-dated information and forward only the information that has been updated since the last call.

The Model Adapter will be in charge of combining and transforming raw legacy data to be compliant with the NGSI meta models, and the Model Adapter will use the NGSI context management API provided by SynchroniCity to update the context information into the broker.

The following sequence diagrams shows how the ad-hoc adapter modules should act in order to correctly update the data on the Context Broker in the SynchroniCity’s platform. It is divided into two main cases: data polling (Figure 43) and subscription (Figure 44). In the polling scenario, the client periodically asks the Legacy Platform for data receiving, and receives responses with the original format and data model (called raw data in the diagrams). This data is sent from the client to the Model Adapter and the Model Adapter translates it into a specific SynchroniCity’s data model adopting NGSI, and forwards the result to the Context Broker.

The subscription scenario differs from the previous one in the first phase. The data is collected through a direct notification from the Legacy Platform to the client that had previously subscribed the specific topic.
4.2.2 NGSI Adapter Example 1: FIWARE IDAS Agent

The IDAS IoT Agent Manager can interact with multiple IoT Agents that support different southbound protocols shown in Figure 45.
Figure 45. Agent Manager integration

It is a single administration endpoint for agent provisioning tasks, redirecting NGSI requests to the appropriate IoT Agent based on the defined protocol.

Each registered Agent is uniquely identified by the following two parameters:
- Protocol: Name of the protocol served by the IoT Agent
- Resource-API Key: Unique pair of strings used to identify different IoT Agents for the same protocol.

The agent manager exposes the Subscription APIs\(^3\) to manage agent provisioning and the services to be forwarded to the appropriate Agent. Whenever a new IoT Agent wants to register itself into the IoT Agent Manager, it must send a subscription request to the following path:

```
Http method: POST
{IoTAgenHost}/iot/protocols
```

It indicates the following information:
- protocol: Name of the protocol served by the IoT Agent.
- description: Textual description for its display in portals.
- iotagent: URL address where requests for this IoT Agent will be redirected.
- resource: Unique string used to identify different IoT Agents for the same protocol.
- services: List of device configurations available in the IoT Agent. The IoT Manager saves a cache for all the configurations, aimed to be used to fasten the operations against the IoT Agent’ databases.

The following example shows a registration of an IoT Agent that already has some configuration groups registered in the IoT Agent:

```
{
```

\(^3\) https://github.com/telefonicaid/iotagent-manager#-subscription-api
"description": "Protocol-A",
"iotagent": "http://aprotocol.rzx.com/iot",
"resource": "/iot/a",
"services": [
{
 "apikey": "801230BJKL23Y9090DSFL123HJK09H324HV8732",
 "token": "8970A9078A803H3BL98PINEQRW8342HBAMS",
 "entity_type": "SensorMachine",
 "resource": "/deviceTest",
 "service": "theService",
 "service_path": "theSubService",
 "attributes": [
 {
 "name": "status",
 "type": "Boolean"
 }
]
}
]

This operation can also be used to update the protocol subscriptions. If a protocol creation request arrives to the IoT Agent Manager with the same protocol and resource of an already existing agent, it will override the record with the new information.

To retrieve the list of all the available protocols, with their available endpoints you can use the following RESTful operation:

Http method: GET

{IoTAgentHost}/iot/protocols

The following example shows a sample response from the server:

{
 "count": 2,
 "protocols": [
 {
 "description" : "Protocol-A",
 "endpoints" : [
 { "endpoint" : " http://aprotocol.rzx.com:8080/iot",

The list accepts to query parameters with the following conditions:

- **limit**: limits the number of entries to return from the query.
- **offset**: skips the given number of entries from the database before returning the list.
4.2.3 NGSI Adapter Example 2: UDG NSGI Adapter

Basically, UDG is composed by different application and protocol modules integrating the different communication protocols and services used by the city of Carouge. This approach permits a high modularity across all the application modules of UDG. Indeed, the application modules can exchange data easily and bidirectionnally between them and, at the end, between communication protocols, applications and services.

In the case of Carouge, two sensor manufacturers are based in Geneva: IEM and OrbiWise. Both offer an access to its server through an API. So, UDG provides a specific module for each sensor manufacturer. At the same time, the canton of Geneva has provided open data for the public parking ("OffStreetParking" FIWARE data model) and the current status of the traffic on the different streets of the canton ("TrafficFlowObserved" FIWARE data model). Then, two application modules were created to retrieve the data of the canton, mapping by the way the data models developed by the canton of Geneva to the FIWARE compatible data models. The public transport company in Geneva named TPG (Transports Publics Genevois) already has an API for the open data and this API was incorporated into UDG through an application module.

UDG included a new model to integrate NGSI v2. This module was tested internally using its own instance of Orion context broker. The following figure illustrates the different modules used in the frame of the integration of Carouge.

In the framework of the SynchroniCity project and the Carouge integration, UDG is using its own NGSI v2 module to transmit the data of the different sensors and services to an Orion context broker hosted by UDG Alliance, a partner of the SynchroniCity consortium.
The process is quite simple: a specific module receives the data from one of the sensors installed in the city of Carouge or from a server based in Geneva. Then, the data is mapped to a defined FIWARE data model and different calls of the NGSI v2 API are made by the UDG NGSI v2 module. First, a call is made to create the FIWARE/NGSI v2 entity on the Orion context broker, followed by a new call to create a subscription for this new created entity. Then, when the data is received again, the UDG NGSI v2 module updates the entity with the corresponding API call.

The different NGSI v2 API calls used by UDG in the context of SynchroniCity are described below. The first step is the creation of new entity inside the Orion context broker and the corresponding NGSI v2 API call is as the following shows:

```sh
curl localhost:1026/v2/entities -s -S --header 'Content-Type: application/json' -d @- <<EOF
{
  "id": "Room1",
  "type": "Room",
  "temperature": {
    "value": 23,
    "type": "Float"
  },
  "pressure": {
    "value": 720,
    "type": "Integer"
  }
}
EOF
```

Figure 47. Creation of a NGSI v2 entity

The following figure shows the subscription of the previous created NGSI v2 entity:

```sh
curl -v localhost:1026/v2/subscriptions -s -S --header 'Content-Type: application/json' \
-d @- <<EOF
{
  "description": "A subscription to get info about Room1",
  "subject": {
    "entities": [
    {
      "id": "Room1",
      "type": "Room"
    }
  ],
  "condition": {
    "attrs": [
    "pressure"
  ]
},
  "notification": {
    "http": {
      "url": "http://localhost:1028/accumulate"
    },
    "attrs": [
    "temperature"
  ]
},
  "expires": "2040-01-01T14:00:00.00Z",
  "throttling": 5
}
EOF
```

Figure 48. Subscription to a NGSI v2 entity

Finally, the figure below displays the update of the same entity.
Figure 49. Update of a NGSI v2 entity

```
curl localhost:1026/v2/entities/Room1/attrs -s -S --header 'Content-Type: application/json' \
   -X PATCH -d @- <<EOF
{
  "temperature": {
    "value": 26.5,
    "type": "Float"
  },
  "pressure": {
    "value": 763,
    "type": "Float"
  }
}
EOF
```
5 Conclusion

In this deliverable, we discussed minimal interface points to build an interoperable smart city framework in a multi-domain and multi-disciplined environment. Its focus is in the interoperability in the southbound interface of the SynchroniCity’s reference architecture and the collection of the current platforms and devices that are deployed and used in the RZs. Diverse IoT devices, products and solutions deployed in the RZs were collected, which helps on achieving one of the most important objectives of Task 2.4: enabling interested cities to access a list of IoT products and solutions easily deployable and fully interoperable with the SynchroniCity’s architecture and deployment.

There are common smart city applications and services, while some are unique in some RZs. On developing a same application, different RZs chose different systems and data models with different platforms. In order to minimize the extra work for RZs to be integrated into SynchroniCity, a detailed survey and analysis was made. Apart from a few exceptions, most of them use a few common standard protocols that are interconnected with platforms via proxies or gateways. It was discussed that SynchroniCity is focusing on data sharing that enables regenerating new services. According to it, the focus of southbound integration is to support an interoperable API among data sources (IoT devices) and the context management module in the platform, without putting any limitation on the choice of IoT networking technologies and data communication protocols that are naturally binding to the city’s situation and the types of applications.

The analysis of the survey data was given per application, as it is believed that such results are useful for city authorities to check the available options when the city wants to build a new service. Cities can learn from the choices of systems, devices, and related protocols that other cities already made.

As we could foresee, different RZs are using different platforms and systems, which have different binding protocols among IoT devices, and between IoT devices and the platform. As reinvention of a new solution is not the scope or goal of SynchroniCity, this deliverable describes the situation, supporting protocols and the required work to be done per platform that is used in each RZ. For new cities, this summarized description per platform can give a good insight on measuring their effort in their situation. It also includes a generic model to build a customised NSGI adapter with two implementation examples: IDAS Agent and UDG NGSI adapter. IDAS Agent is used in FIWARE platform that uses NGSI API, and UDG NGSI Agent is built on top of UDG IoT management module to support the NGSI API and FIWARE platform. The current RZs have already built an NGSI adapter in a gateway or are planning to build one. For the new cities, the implementation guidelines and examples may give a good starting point when they need to build the adapter.

As a next step, this task will focus on building a southbound market place in order to support Digital Single Market (DSM). The marketplace will include IoT products and solutions interoperable with the SynchroniCity’s framework, and also provide use cases of the RZs. It aims to provide interested cities for references to find SynchroniCity compliant products and solutions and help to foster IoT ecosystem.

The design of interoperability will be continuously carried out, both at a protocol level and at a data model level in RZs, which make it possible for platform-agnostic data gathering and sharing within the Digital Single Market (DSM). At the end of this process, a catalogue of devices ready for the integration will be published.
References

[12] Total Waste System (TWS), www.totalwastesystems.nl
https://www.iso.org/standard/50942.html
[33] Diehl Metering Izar Receiver GPRS/LAN, www.diehl.com/en/diehl-metering/products-solutions/pdb-details.html?tx_diehlproducts_pi1%5Bproduct%5D=2794509&tx_diehlproducts_pi1%5BbackPid%5D=535&tx_diehlproducts_pi1%5Baction%5D=show&tx_diehlproducts_pi1%5Bcontroller%5D=MeteringProduct&cHash=c6b8923ed171114c97336324b3e1382a
[34] Libelium - Connecting Sensors to the Cloud, www.libelium.com
[36] Diehl Metering, www.diehl.com/en/diehl-metering/products-solutions/pdb-details.html?tx_diehlproducts_pi1%5Bproduct%5D=21566482578&tx_diehlproducts_pi1%5BbackPid%5D=512&tx_diehlproducts_pi1%5Baction%5D=show&tx_diehlproducts_pi1%5Bcontroller%5D=MeteringProduct&cHash=096c86c6c9e20fa2e5823130c90d8a5e
[38] ETSI TS 100 392-3-7, Terrestrial Trunked Radio (TETRA); Voice plus Data (V+D); Part 3: Interworking at the Inter-System Interface (ISI); Sub-part 7: Speech Format Implementation for Packet Mode Transmission, www.etsi.org/deliver/etsi_ts/100300_100399/1003920307/01.01.01/01.01.01_60/ts_1003920307v010101p.pdf
[40] Platform WSO2, https://wso2.com/platform
[46] EU Smart Santander project, www.smartsantander.eu
Annex

Set of tables compiling application information.

Table A1. Reference Zones Analysis: Parking

<table>
<thead>
<tr>
<th>Application</th>
<th>RZ</th>
<th>IoT Device</th>
<th>Gateway or backend system</th>
<th>Connectivity</th>
<th>Data comm. protocol</th>
<th>Data format</th>
<th>Southbound Interface</th>
<th>Device managemen t</th>
<th>Context Data mgmt</th>
<th>Direct comm. with data storage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Model name</td>
<td>Backend IoT device</td>
<td></td>
<td>Name</td>
<td>Version</td>
<td></td>
<td>Comms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carouge</td>
<td></td>
<td>IEM Pres to Sense</td>
<td>IEM Pres to 1000 Server</td>
<td>LoRaWAN</td>
<td>HTTPS</td>
<td>JSON</td>
<td>UDG</td>
<td>UDG</td>
<td>Orion Context Broker</td>
<td>CKAN, MongoDB</td>
</tr>
<tr>
<td>Eindhoven</td>
<td></td>
<td>Proprietary via Q-Park</td>
<td>Via Q-Park</td>
<td>?</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seongnam</td>
<td></td>
<td>Parking sensor</td>
<td>Gateway (Kerlink SPN)</td>
<td>LoRa 1.1</td>
<td>XML</td>
<td>oneM2M</td>
<td>oneM2M LoRa IPE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antwerp</td>
<td></td>
<td>FASTPRK</td>
<td>WorldSensing Cloud</td>
<td>Sigfox</td>
<td>REST API</td>
<td>JSON</td>
<td>ACPaaS IoT Gateway</td>
<td>REST API</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(cloud)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A*Sign</td>
<td>Sigfox Cloud</td>
<td>Sigfox</td>
<td>REST API</td>
<td>JSON</td>
<td>Romcore SmartCities backend</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santander</td>
<td></td>
<td>Parking sensor</td>
<td>Meshlium (Libelium)</td>
<td>802.15.4/3G/WiFi/Ethernet</td>
<td>REST, MQTT, WebSocket</td>
<td>UL2.0</td>
<td>SmartSantander Infraestructure FIWARE IDAS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Milan</td>
<td></td>
<td>Smart parking sensors for</td>
<td>Kiunsys</td>
<td>LoRaWAN: NB-IoT</td>
<td>MQTT+TLS/SSL</td>
<td>JSON</td>
<td>InesCloud ??</td>
<td>REST API</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>disabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Smart parking sensors for</td>
<td>Kiunsys</td>
<td>LoRaWAN: NB-IoT</td>
<td>MQTT+TLS/SSL</td>
<td>JSON</td>
<td>InesCloud ??</td>
<td>REST API</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td>RZ</td>
<td>IoT Device</td>
<td>Gateway or backend system</td>
<td>Connectivity</td>
<td>Data comm. protocol</td>
<td>Data format</td>
<td>Device management</td>
<td>Commuication</td>
<td>Context Data mgmt</td>
<td>Direct comm. with data storage</td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
<td>------------</td>
<td>---------------------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Noise</td>
<td>Carouge</td>
<td>Orbi Wise</td>
<td>Orbiwise Server</td>
<td>LoRaWAN</td>
<td>HTTPS</td>
<td>JSON</td>
<td>UDG</td>
<td>Orion Context Broker</td>
<td>CKAN, MongoDB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Helsinki</td>
<td>Cesva TA120</td>
<td>Custom HTTP endpoint</td>
<td>3G/4G</td>
<td>HTTP</td>
<td>Sentilo JSON UL2.0</td>
<td>Sensors POST to custom backend</td>
<td>Custom backend POSTS, NGSI data is constructed and proxied to ORION</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Santander</td>
<td>Noise sensors</td>
<td>Meshilium (Libelium)</td>
<td>---</td>
<td>n/a</td>
<td>HTTP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A2. Reference Zones Analysis: Noise
Table A3. Reference Zones Analysis: Street Light

<table>
<thead>
<tr>
<th>Application</th>
<th>RZ</th>
<th>IoT Device</th>
<th>Gateway or backend system</th>
<th>Connectivity</th>
<th>Data comm. protocol</th>
<th>Data format</th>
<th>Southbound Interface</th>
<th>Direct comm. with data storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Street Light</td>
<td></td>
<td>Street light actuator / controller</td>
<td></td>
<td></td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santander</td>
<td>Seongnam</td>
<td>Meshlium (Libelium) Presence & Luminosity Nodes</td>
<td>Meshlium (Libelium)</td>
<td>802.15.4/3G/WiFi/Ethernet</td>
<td>REST, MQTT, WebSocket</td>
<td>UL2.0</td>
<td>SmartSantander Infrastructure FIWARE IDAS</td>
<td>UL2.0 ? ?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>--</td>
<td>LoRa</td>
<td></td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manchester</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A4. Reference Zones Analysis: Mobility and Traffic

<table>
<thead>
<tr>
<th>Application</th>
<th>RZ</th>
<th>IoT Device</th>
<th>Gateway or backend system</th>
<th>Connectivity</th>
<th>Data comm. protocol</th>
<th>Data format</th>
<th>Southbound Interface</th>
<th>Direct comm. with data storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobility and Traffic</td>
<td>Milan (Mobility)</td>
<td>Metro status</td>
<td>ATM</td>
<td>ATM</td>
<td>n/a</td>
<td>SOAP Webservice</td>
<td>Data storage strictly forbidden</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>--</td>
<td>---</td>
<td></td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Metro station - Parking status</td>
<td>ATM</td>
<td>ATM</td>
<td>n/a</td>
<td>SOAP Webservice</td>
<td>Data storage strictly forbidden</td>
<td></td>
</tr>
<tr>
<td>Around me - Point of interest</td>
<td>ATM</td>
<td>n/a</td>
<td>SOAP Webservice</td>
<td>Data storage strictly forbidden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>----------------</td>
<td>--------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BikeMe - Bike sharing station-based service. Bikes availability at each station.</td>
<td>GPS</td>
<td>ATM</td>
<td>n/a</td>
<td>SOAP Webservice</td>
<td>Data storage strictly forbidden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bus/tram waiting time</td>
<td>ATM</td>
<td>XML</td>
<td>SOAP Webservice</td>
<td>Data storage strictly forbidden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local train time table</td>
<td>Trenord</td>
<td>XML</td>
<td>REST API</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local train circulation status</td>
<td>Trenord</td>
<td>n/a</td>
<td>RSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linate and Malpensa airport flights timetables</td>
<td>SEA</td>
<td>n/a</td>
<td>REST API</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linate and Malpensa Airport parking availability</td>
<td>SEA</td>
<td>n/a</td>
<td>REST API</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bergamo airport flights timetables</td>
<td>SACBO</td>
<td>n/a</td>
<td>REST API</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airport-Milan bus connection service</td>
<td>first company</td>
<td>Autostradale</td>
<td>n/a</td>
<td>SOAP Webservice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airport-Milan bus connection service</td>
<td>second company</td>
<td>Air Pullmann</td>
<td>n/a</td>
<td>SOAP Webservice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Train network status</td>
<td>Trenitalia</td>
<td>n/a</td>
<td>SOAP Webservice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milan (Traffic)</td>
<td>various types, to measure traffic flow, SMTCC / SigmaPlus / Utopia</td>
<td>cable/GSM/SDH</td>
<td>proprietary protocol</td>
<td>n/a</td>
<td>no</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Sensors Type</td>
<td>Sensors Descriptions</td>
<td>Protocol/Network</td>
<td>Compatibility</td>
<td>Technology Details</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>--------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santander</td>
<td>Meshlium (Libelium) Vehicle counter SENSORS</td>
<td>Various types; B/W, color, with OCR, infrared</td>
<td>SDH/W-Fi</td>
<td>n/a</td>
<td>No no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mobile cameras</td>
<td>Various types; B/W, color, with OCR, infrared</td>
<td>3G/4G</td>
<td>n/a</td>
<td>No no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Local police agents</td>
<td>Road incidents reports</td>
<td>Italian standard incidents report protocol</td>
<td>Database</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porto</td>
<td>Vehicle counters</td>
<td>---</td>
<td>DIASER / GERTRUDE</td>
<td>TXT</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Video cameras</td>
<td>---</td>
<td>ONVIF</td>
<td>n/a</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td>RZ</td>
<td>IoT Device</td>
<td>Gateway or backend system info</td>
<td>Connectivity</td>
<td>Data comm. protocol</td>
<td>Data format</td>
<td>Southbound Interface</td>
<td>Direct comm. With data storage, if applicable</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>--------------</td>
<td>--------------------</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milan</td>
<td></td>
<td>lampPost weather sensor</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>camera LEZ (Low Emission Zone) to monitor vehicles access</td>
<td>camera LEZ (Low Emission Zone) to monitor vehicles access</td>
<td>proprietary protocol</td>
<td>n/a</td>
<td>JSON/XML ??ami</td>
<td>WSO2</td>
<td>REST API</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cameras</td>
<td>3G/4G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weather reports and forecast</td>
<td>Report also air-pollution data and UV radiation</td>
<td>n/a</td>
<td>E015</td>
<td>SOAP WebService</td>
<td>WS02 context broker</td>
<td>no</td>
</tr>
</tbody>
</table>

Table A 5. Reference Zones Analysis: Environment
<table>
<thead>
<tr>
<th>Seongnam</th>
<th>Air quality sensors</th>
<th>IMEC</th>
<th>Proximus LoRaWAN base station</th>
<th>LoRaWAN</th>
<th>LoRaWAN (+Sigfox & DASH7)</th>
<th>n/a</th>
<th>JSON</th>
<th>---</th>
<th>---</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antwerp</td>
<td>Fixed/Mobile Air Quality Sensor</td>
<td>Guppy</td>
<td>Proximus LoRaWAN base station</td>
<td>LoRaWAN</td>
<td>LoRaWAN</td>
<td>JSON</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Mobile Air Quality Sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smart Spot Air quality</td>
<td>v.1.5</td>
<td>Homard</td>
<td>v1.0</td>
<td>Wi-Fi, M2M</td>
<td>LwM2M</td>
<td>v1.0</td>
<td>JSON, TEXT, TLV, Packet</td>
<td>Homard</td>
</tr>
<tr>
<td></td>
<td>Meshlium (Libelium) Noise</td>
<td>?</td>
<td>Meshlium (Libelium)</td>
<td>802.15.4/3G/Wi-Fi/Ethernet</td>
<td>REST, MQTT, WebSocket</td>
<td>UL2.0</td>
<td>SmartSantander Infrastructure FIWARE IDAS</td>
<td>UL2.0</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>Meshlium (Libelium) Luminosity</td>
<td>?</td>
<td>Meshlium (Libelium)</td>
<td>802.15.4/3G/Wi-Fi/Ethernet</td>
<td>REST, MQTT, WebSocket</td>
<td>UL2.0</td>
<td>SmartSantander Infrastructure FIWARE IDAS</td>
<td>UL2.0</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>Meshlium (Libelium) CO</td>
<td>?</td>
<td>Meshlium (Libelium)</td>
<td>802.15.4/3G/Wi-Fi/Ethernet</td>
<td>REST, MQTT, WebSocket</td>
<td>UL2.0</td>
<td>SmartSantander Infrastructure FIWARE IDAS</td>
<td>UL2.0</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>Meshlium (Libelium) Temperature</td>
<td>?</td>
<td>Meshlium (Libelium)</td>
<td>802.15.4/3G/Wi-Fi/Ethernet</td>
<td>REST, MQTT, WebSocket</td>
<td>UL2.0</td>
<td>SmartSantander Infrastructure FIWARE IDAS</td>
<td>UL2.0</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>GPRS module MOBILE node</td>
<td>?</td>
<td>GPRS module</td>
<td>GPRS</td>
<td>REST, MQTT, WebSocket</td>
<td>UL2.0</td>
<td>SmartSantander Infrastructure FIWARE IDAS</td>
<td>UL2.0</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>Vaisala AQT420</td>
<td>Air quality</td>
<td>Proprietary</td>
<td>Proprietary</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Helsinki</td>
<td>Airbox</td>
<td>Intelligently Air Measurement system</td>
<td>Airbox</td>
<td>GSM</td>
<td>AIREAS API v2</td>
<td>JSON</td>
<td>HTTP V2.0</td>
<td>VIA API on open data portal</td>
<td>---</td>
</tr>
<tr>
<td>Eindhoven</td>
<td>AIREAS Airbox</td>
<td>Particle Monitor SmartNOISESense (noise)</td>
<td>Monitor Sense (www.sense.monitor.pt)</td>
<td>HTTP</td>
<td>CoAP</td>
<td>JSON</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Porto</td>
<td>Citibrain / Monitar SmartNOISESense (noise)</td>
<td>Monitar Sense (www.sense.monitor.pt)</td>
<td>MQTT</td>
<td>JSON</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Table A6. Reference Zones Analysis: Culture

<table>
<thead>
<tr>
<th>Application</th>
<th>RZ</th>
<th>IoT Device</th>
<th>Gateway or backend system</th>
<th>Connectivity</th>
<th>Data comm. protocol</th>
<th>Data format</th>
<th>Device management</th>
<th>Communication</th>
<th>Context Data mgmt</th>
<th>Direct comm. with data storage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Model name</td>
<td>Version</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Culture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manchester</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>n/a</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Milan</td>
<td>Street naming</td>
<td>4.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Street/Area Information</td>
<td>1.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Events+categories</td>
<td>1.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Point of interest+categories</td>
<td>1.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Itinerary+categories</td>
<td>1.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Free WIFI area locations</td>
<td>1.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

- **SmartAIRSense**: (air pollutants)
 - temperature, relative humidity
 - wind (direction, speed), rain, UV and noise
<table>
<thead>
<tr>
<th>Application</th>
<th>RZ</th>
<th>IoT Device</th>
<th>Gateway or backend system info</th>
<th>Connectivity</th>
<th>Data comm. protocol</th>
<th>Data format</th>
<th>Southbound Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Model name</td>
<td>Version</td>
<td></td>
<td></td>
<td></td>
<td>Device management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Version</td>
<td>Backend IoT device</td>
<td>Version</td>
<td>Name</td>
<td>Version</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Communicatio n</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Context Data manage ment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Direct comm. with data storage</td>
</tr>
<tr>
<td>Citizen</td>
<td></td>
<td>Users mobile phones</td>
<td>Android; iOS; Windows phone; BlackBerry</td>
<td>TIM Mobility scan</td>
<td>3G, 4G</td>
<td>n/a</td>
<td>EO15</td>
</tr>
<tr>
<td>Santander</td>
<td></td>
<td>Users Mobile phones</td>
<td>Android & iOS</td>
<td>Wi-Fi, 3G, 4G, Bluetooth LE</td>
<td>n/a</td>
<td>SmartSantander Infrastructure FIWARE IDAS</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Table A8. Reference Zones Analysis: Energy Management

<table>
<thead>
<tr>
<th>Application</th>
<th>RZ</th>
<th>IoT Device</th>
<th>Gateway or backend system info</th>
<th>Connectivity</th>
<th>Data comm. protocol</th>
<th>Data format</th>
<th>Southbound Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Model name</td>
<td>Version</td>
<td></td>
<td>Name</td>
<td>Version</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Backend IoT device</td>
<td>Version</td>
<td></td>
<td>Name</td>
<td>Version</td>
<td></td>
</tr>
<tr>
<td>Energy Management Heating System</td>
<td>Milano</td>
<td>temperature sensors</td>
<td>Capetti</td>
<td>Control Unit CTR372 or Flower</td>
<td>Cable/Wi-Fi connection from sensor to control Unit</td>
<td>from control unit to central server: GSM/GPRS</td>
<td>proprietary protocol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>temperature probes</td>
<td>Capetti</td>
<td>Control Unit CTR372 or Flower</td>
<td>Cable/Wi-Fi connection from sensor to control Unit</td>
<td>from control unit to central server: GSM/GPRS</td>
<td>proprietary protocol</td>
</tr>
</tbody>
</table>

Table A9. Reference Zones Analysis: Safety Alarms

<table>
<thead>
<tr>
<th>Application</th>
<th>RZ</th>
<th>IoT Device</th>
<th>Gateway or backend system info</th>
<th>Connectivity</th>
<th>Data comm. protocol</th>
<th>Data format</th>
<th>Southbound Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Model name</td>
<td>Version</td>
<td></td>
<td>Name</td>
<td>Version</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Backend IoT device</td>
<td>Version</td>
<td></td>
<td>Name</td>
<td>Version</td>
<td></td>
</tr>
<tr>
<td>Safety Alarms</td>
<td>Milan</td>
<td>volumetric sensors</td>
<td>Control Unit</td>
<td>Cable connection from sensor to control Unit</td>
<td>Wi-Fi</td>
<td>proprietary protocol</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cameras</td>
<td>Control Unit</td>
<td>Cable connection from sensor to control Unit</td>
<td>Wi-Fi</td>
<td>proprietary protocol</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>motion detectors</td>
<td>Control Unit</td>
<td>Cable connection from sensor to control Unit</td>
<td>Wi-Fi</td>
<td>proprietary protocol</td>
<td>n/a</td>
</tr>
<tr>
<td>Application</td>
<td>RZ</td>
<td>IoT Device</td>
<td>Gateway or backend system info</td>
<td>Connectivity</td>
<td>Data comm. protocol</td>
<td>Data format</td>
<td>Southbound Interface</td>
</tr>
<tr>
<td>-------------------</td>
<td>----</td>
<td>-----------------</td>
<td>--------------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Milan</td>
<td>security cameras</td>
<td>switch</td>
<td>LoRaWAN / SCTT</td>
<td>proprietary protocol</td>
<td>Pacis</td>
</tr>
<tr>
<td>Security</td>
<td></td>
<td>mobile GPS & radio</td>
<td>radio</td>
<td>sensor to Control Station</td>
<td>communication station-to-station wired (SDS-SCN); AVL; GRI Protocol</td>
<td>proprietary protocol (Tetra - GRI Protocol)</td>
<td>Tetra - GRI Protocol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vehicles GPS & radio</td>
<td>radio</td>
<td>sensor to Control Station</td>
<td>communication station-to-station wired (SDS-SCN); AVL; GRI Protocol</td>
<td>proprietary protocol (Tetra - GRI Protocol)</td>
<td>Tetra - GRI Protocol</td>
</tr>
</tbody>
</table>